CANFORD

TECHNICAL DATA SHEET

CANFORD PPM DRIVE CARD

58-322 CANFORD PPM DRIVE CARD STEREO

This PPM drive card incorporates a micro controller to control the PPM characteristics and can be run from either a single or dual rail power supply and be driven from either balanced or unbalanced sources. Two peak LED`s illuminate at PPM 6, if fitted.

Default operation is dual channel L/R metering but external single pole switches can be added to select M\&S, M\&S+20 and BBC mode.

MODE Switch Functions:

MS OPEN
MS only
MS,MS2O
MS,BBC
MS,BBC,MS20

Red Meter	Green Meter
Input L	Input R
$(L+R) / 2$	$(L-R) / 2$
$(L+R) / 2$	$10(L-R) / 2$
$(L+R) / 2$	$(L-R) / 2$
$(L+R) / 2$	$10(L-R) / 2$

Provision has been made for external meters/meter and PPM SLOW mode.
(For all wiring details see "Connections".) Observe handling precautions for ESD sensitive devices at all times. Frequency response has a roll-off above 16 kHz .

CONNECTIONS

(Refer to wiring diagrams at end ofTechnical Specification section).

For optimal EMC performance, care must be taken with appropriate shielding of external connections and with grounding/routing of signal and control cables. Ideally, the assembled meters should be housed in screened cases and power supply common should be earthed as close as possible to the PCB. Ferrite rings may be used to improve performance in sensitive areas. In particular, any long cables to remote control switches and external meter should be via earthed screened cable. Ceramic de-coupling capacitors may be connected close to the PCB in necessary.

POWER SUPPLIES

Power can be dual or single supply (see specification). Single $12-30 \mathrm{VDC}$ at 50 mA is recommended as the ground plane is then $0 V$.This gives improvements in the EMC performance of the unit. Dual 6 V to 15 V DC at 50 mA is also an option.

CALIBRATION

Calibration of the drive is factory set to PPM4 at OdBu. When fitting the meter to the card it may be necessary to adjust pot RV3, "METER L" and pot RV4, "METER R", to compensate for the meter tolerance on both Left and Right meters respectively. After applying I kHz tone at OdBu, adjust RV3 and/or RV4 to align the pointer(s) with PPM 4. RVI, "GAIN L" and RV2, "GAIN R", should not need adjustment but the user may wish to alter the reference level for systems which are not at 0dBu.

TECHNICAL SPECIFICATION

Indicating meter required to:

Input signal:
Resolution of meter drive circuitry:
Resolution of rectifier:
Input impedance:
Frequency response:
Power supply requirements: Dimensions:
Weight:

IEC268-10
OdBu (+/- 3dBu)
8 bit
10 bit @+14dBu level
100kO (per leg) balanced
$20-16000 \mathrm{~Hz}$
$12-30 \mathrm{~V}$ DC or 6 V to 15 V DC @ 50 mA
$85 \times 88 \mathrm{~mm}$
60 g

CANFORD

PIN LAYOUTS

PLI

I Left Signal +ve
2 Left Signal -ve
3 Common
4 Right Signal +ve
5 Right Signal -ve
6 Common
7 Power Supply +ve
8 Power Supply 0V/-ve

PL2

I Mode Select MS
2 Mode Select BBC
3 Mode Select MS20 (S plus 20dB gain)
4 Slow Mode Switch (both channels)
5 Peak LED (L or M Signal) : red needle
6 Peak LED (R or S Signal) : green needle
7 Mode/Peak LED (common)
8 External Meter (common) -ve
9 External Meter (red) +ve
10 External Meter (green) +ve
PLI WIRING

CANFORD

PL2 WIRING

PL2 Wiring: Optional External Meter(s)

PL2 Wiring: Optional Peak LED

PL2 Wiring: Optional Mode Switches

COMPONENT LAYOUT

